Norming Sets and Compactness
نویسندگان
چکیده
منابع مشابه
Norming Sets and Related Remez-type Inequalities
The classical Remez inequality ([33]) bounds the maximum of the absolute value of a real polynomial P of degree d on [−1, 1] through the maximum of its absolute value on any subset Z ⊂ [−1, 1] of positive Lebesgue measure. Extensions to several variables and to certain sets of Lebesgue measure zero, massive in a much weaker sense, are available (see, e.g., [14, 39, 8]). Still, given a subset Z ...
متن کاملCompactness of isospectral sets
© Séminaire de Théorie spectrale et géométrie (Grenoble), 1991, tous droits réservés. L’accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi...
متن کاملSearchable Sets , Dubuc - Penon Compactness
We show that a number of contenders for an abstract and general notion of compactness, applicable in particular to computability theory and constructive mathematics, coincide in some well known frameworks. We consider compactness of sets rather than of spaces, where we replace topologies by the restriction to constructive reasoning, as in the work by a number of authors, including Penon, Dubuc,...
متن کاملGlobal polynomial optimization by norming sets on sphere and torus
Using the approximation theoretic notion of norming set, we compute (1− ")-approximations to the global minimum of arbitrary n-th degree polynomials on the sphere, by discrete minimization on approximately 3.2 n2"−1 trigonometric grid points, or 2n2"−1 quasi-uniform points. The same error size is attained by approximately 6.5 n2"−1 trigonometric grid points on the torus. 2010 AMS subject classi...
متن کاملNorming Sets and Scattered Data Approximation on Spheres
This short note deals with approximation order of spaces spanned by (x;), x 2 X, with a positive deenite kernel on a sphere and X a given set of nodes. We estimate both the L 2-and the L 1-error, if the function to be approximated is assumed to be rather smooth, thus deviating from the usual assumption that the function stems from thèna-tive space' of the kernel. It is of interest that, based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1995
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181072195